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Development of a chronic fish toxicity model for predicting sub-lethal
NOEC values for non-polar narcotics

T.J. Austin and C.V. Eadsforth

Shell Risk Science Team, Shell Health, Manchester, UK

(Received 6 September 2013; in final form 4 October 2013)

To comply with the REACH (Registration, Evaluation, Authorisation and restriction of
Chemicals) regulations, the generation of chronic fish toxicity data is required for chemicals
produced or imported within or into the EU in quantities greater than 100 tonnes per year.
This comes at a great cost to industry and consumers alike and requires the sacrifice of
many vertebrates. In acknowledgment of these issues the REACH regulations encourage the
use of non-testing methods (NTM). These include read-across, weight-of-evidence and
QSAR (quantitative structure–activity relationship) techniques. There are many QSAR tools
available to generate predictive values for a number of physico-chemical properties, as well
as human and environmental health end points; however, close analysis of the currently
available chronic fish models identified room for improvement in both the selection of data
used and in its application in model creation. In light of this a model was developed using
only sub-lethal no-observed-effect concentration (NOEC) end-point data according to best
practice QSAR development. Only the lowest value was taken for each compound, in line
with the conservative approach taken by the European Chemicals Agency (ECHA). The
model developed meets the Organisation for Economic Co-operation and Development
(OECD) principles, has strong internal and external validation statistics, and can reliably
predict sub-lethal chronic NOEC values for fish within its defined applicability domain.

Keywords: QSAR; fish; toxicity; chronic; NOEC; non-polar; narcosis

1. Introduction

The EU regulation, REACH, came into force on June 1st 2007. REACH (Registration,
Evaluation, Authorisation and restriction of Chemicals) requires the registration of all chemicals
manufactured and imported into the EU economic region above a certain tonnage. The informa-
tion requirements for the registration and authorisation of a substance vary according to the ton-
nage manufactured/imported per year: the higher the tonnage, the more detailed the information
that is required. Where chemicals are imported or manufactured at over 100 tonnes per year,
chronic toxicity testing on fish is required under the REACH legislation [1]. The generation of
such information comes at great cost to industry and the (eco) toxicity tests which generate infor-
mation to protect human and environmental health require the sacrifice of many vertebrates.

In acknowledgment of these issues the REACH regulations encourage the use of
non-testing methods (NTM). These include read-across, weight-of-evidence and QSAR
(quantitative structure–activity relationship) techniques. QSARs are mathematical models that
relate a quantitative parameter associated with a chemical’s structure with a quantitative
measurable parameter e.g. its toxicity. REACH article 25 stipulates the obligation of both the
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registrant and regulatory body (European Chemicals Agency – ECHA) to perform or require
vertebrate testing only as a last resort, and to consider all other options beforehand [1].
QSARs can be used (along with the physico-chemical properties of a substance) to help deter-
mine whether a compound has the potential to cause human or environmental health hazards
and therefore whether further vertebrate testing is required. Where testing does not appear
scientifically necessary, QSARs can be used as a replacement for regulatory purposes;
however, this can only be done if they are in accordance with conditions laid out in Annex
XI of the REACH regulations [1] which states:

‘Results obtained from valid qualitative or quantitative structure–activity relationship models ((Q)
SARs) may indicate the presence or absence of a certain dangerous property. Results of (Q)SARs
may be used instead of testing when the following conditions are met:

– results are derived from a (Q)SAR model whose scientific validity has been established,

– the substance falls within the applicability domain of the (Q)SAR model,

– results are adequate for the purpose of classification and labelling and/or risk assessment, and

– adequate and reliable documentation of the applied method is provided.’

QSARs are most often used in weight-of-evidence, read-across or category approaches,
usually in conjunction with experimental data that are available for related compounds. In
cases of read-across, QSARs may be used to fill data gaps in between compounds with
experimental data which show a clear trend. Alternatively they may be used as part of a
weight-of-evidence approach with other independent data sources to help justify the waiving
of experimental data. QSARs are therefore a very important tool for meeting EU regulatory
goals, whilst reducing the number of sacrificial vertebrates and costs to industry.

There are many QSAR tools available to generate predictive values for a number of
physico-chemical properties, human and environmental health end points. Models which may
be used to predict chronic toxicity to fish for compounds which act via non-polar narcosis (i.e.
neutral organics), include ECOSARTM (http://www.epa.gov/oppt/newchems/tools/21ecosar.htm)
and QSARCHE (http://www.arche-consulting.be/organics-toolbox/qsarche-model/) [2].
ECOSARTM is included in the Organisation for Economic Co-operation and Development
(OECD) QSAR toolbox (http://www.qsartoolbox.org/), its inclusion implying its adherence to
OECD QSAR principles [3].

Dearden et al. [4] have identified 21 types of error which commonly occur in the creation of
QSAR models which can hinder their conformity to the OECD principles. Many of these errors
are only apparent upon detailed inspection of the QSAR models which on the face of it would
appear to align with the principles laid out by the OECD [3]. ECOSARTM and QSARCHE both
contain common errors identified by Dearden et al. [4]. An error common to both models is that
there is a replication of compounds within the training data set. Including multiple data points
for one compound will alter the resultant model algorithm and therefore the predictions made
using it. Additionally, statistics which represent the robustness and predictivity of the model,
e.g. the leave-many-out internally cross-validated correlation coefficient (Q2

LMO), will be
altered and may be misleading as to the model’s quality.

Looked at individually, these two models could also be improved in other areas. The ECO-
SARTM chronic fish toxicity model is based on a ChV or ‘chronic’ value. Within the guidance
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document this ChV value ‘is defined as the geometric mean of the no-observed-effect concen-
tration (NOEC) and the lowest-observed-effect concentration (LOEC)’ [5]. Upon inspection of
the data, however, it can be seen that the end points consist of a mixture of NOEC, LOEC and
MATC (maximum acceptable toxicant concentration) values. Additionally, these values are
taken forward in work to refine this QSAR by de Haas et al. [6]. In contrast, the QSARCHE
model uses only NOEC values; however, these cover end points for growth/reproduction and
mortality. The mortality end-point values will always be significantly higher than the more sen-
sitive growth/reproduction values and will likely provide a less conservative model. Including
these different end points also increases what will already be a large variation between experi-
mental values (because of the different test methods and test species used). The QSARCHE
training-set data also includes other inadequate data, including data generated using sub-
chronic tests as well as data for an acid and product mixture which should not be included in
the model. Many of these inclusions happen because of misleading information given in data
sources; this is discussed later. In light of these findings, as well as the confidential nature of
some data included in ECOSARTM, here it was deemed necessary to carry out a separate and
thorough data-mining exercise including more stringent data-inclusion criteria.

Neutral organic compounds exert toxicity via non-polar narcosis or ‘baseline toxicity’ and
tend to be relatively hydrophobic [7,8]. The neutral organic class toxicity has a strong
relationship with the the octanol-water partition coefficient (Kow) parameter and includes
chemicals such as aliphatic and aromatic hydrocarbons, alcohols, alkenes, alkyl and aryl
halides, cyanates, ethers, ketones, sulfides and disulfides [5].

The aim of this work was to create a QSAR for the chronic toxicity of neutral organic
compounds (that act via non-polar narcosis), based, as far as possible, on best QSAR practice.

2. Methods

2.1 Data gathering and processing

Classifying chemicals for chronic toxicity under the CLP regulation (the EU’s implementation
of the United Nation’s Globally Harmonised System for classification and labelling) and
amendments hitherto [9,10], is carried out by assessing chronic NOEC or EC10 values. When
considering environmental risk, the REACH regulations take a conservative approach [1].
Where there are multiple valid toxicity values for an end point, the most conservative (worst
case) is always used; additionally, if there is a lack of data across trophic levels, assessment
factors may be applied to compensate for the uncertainty. In this vein, and considering the
inherent uncertainty in QSAR predictions, it was decided that a conservative approach would
be taken and only NOEC data would be gathered and included into the QSAR training set as
opposed to LOEC or MATC values. Best practice in QSAR development dictates that only
one value should be included for each compound within the training set [4]. To ensure the
most conservative model, only the most sensitive end points were included for each substance
(growth/reproduction) and mortality NOECs were filtered out at an early stage.

Chronic fish NOEC data were obtained from the following sources:

• The EPA’s ECOTOX database (http://cfpub.epa.gov/ecotox/advanced_query.htm).

• The ECETOC database downloaded through the OECD QSAR Toolbox (http://
www.oecd.org/env/ehs/risk-assessment/theoecdqsartoolbox.htm).

• The ECHA dossier dissemination portal (http://echa.europa.eu/information-on-chemicals/
registered-substances).
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The ECOTOX database was searched for chronic data using its inbuilt advanced query
function. The ECETOC database was downloaded through the OECD QSAR Toolbox and
the data were filtered in ExcelTM. The ECHA dossier dissemination portal does not have an
advanced search feature, therefore this database was searched using the eChemPortal
(http://www.echemportal.org/echemportal/propertysearch/treeselect_input.action?queryID=PRO
Q2cpy). A high amount of replication was observed between the ECOTOX and ECETOC
databases.

The ECHA dossier dissemination portal was searched for dossiers containing experimental
studies scoring 1 or 2 on the Klimisch scale. The Klimisch scoring system is the method of
choice for assessing the suitability of test data for REACH compliance purposes [11]. Studies
given Klimisch scores of 1 and 2 whilst not necessarily being carried out under official GLP
(Good Laboratory Practice), are deemed reliable enough to be used for chemical regulatory
classifications and have therefore been seen as an acceptable data standard for QSAR devel-
opment.

Results were only carried forward from the original search if they were acceptable in a
regulatory context i.e. if OECD 210, 215, EPA OPP 72-4 or 72-5 methods (or equivalent)
were followed. Equivalent methods were only accepted if the test protocol was scientifically
sound and had an exposure duration of at least 21 days. Test data on all freshwater fish
species were included. Where possible, a thorough analysis of the publication cited was
carried out to assess the suitability of the data for inclusion in the QSAR. In a small number
of cases this was not possible where data were obtained from an ECHA dossier and limited
details of the study were divulged; expert judgment on their suitability was used in these
cases. An emphasis was placed on checking the source material cited by each database. As
seen in other QSAR work, normally carried out under strict time constraints in the case of
industry, it is very easy to presume database values are reliable; however, the examination of
other QSAR work such as QSARCHE [2] shows that extreme care must be taken when using
experimental data found in databases such as ECETOC and ECOTOX.

Inspection of the QSARCHE Verhaar class 1 training set led to the identification of a
number of inadequate NOEC values which should be removed from the model. A NOEC
value of 0.110 mmol/L (98 mg/L) for propylene glycol (CAS 57-56-6) was taken from the
ECETOC database and included in the QSARCHE training set. Inspection of the literature
source [12] revealed that this value was in fact for a mixture containing propylene glycol and
the NOEC value for pure propylene glycol was much higher (less toxic). The higher NOEC
value was given as a less than (<) value (an effect was seen at the lowest concentration
measured) and was not deemed appropriate for inclusion in the current study; however, the
EC25 of the formulated mixture was a factor of 60 lower than that of pure propylene glycol
and therefore it is clear the additives within drove the toxicity during this test. Additionally,
the test used in this study was based on Weber et al. [13], a short-term test method used to
estimate chronic toxicity. Other issues with the QSARCHE training set exist e.g. the inclusion
of Aroclor (CAS 12672-29-6), a mixture, which should not be included in the training set.
Additionally, other sub-chronic test data values have been included e.g. for octan-1-ol (CAS
111-87-5). In this study every effort was made to ensure only true chronic studies were
included for single substances of high purity.

Experimental log Kow values for each compound were taken from either their ECHA
dossier or the ECOSARTM (v1.11) PhysProp database. Additionally, the molecular weight of
each compound was obtained by using the batch-processing option available in ECOSARTM

(v1.11). The log Kow parameter was used as the only descriptor for the model, with the
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response parameter being the log of the experimental NOEC value in mmol/L (NOEC (mg/L)/
molecular weight).

2.2 Toxicity mode of action and chemical classification

Based on previous work to create an acute QSAR for chemicals that act via non-polar narco-
sis [14], the Verhaar scheme (modified) within Toxtree v2.5.0 (http://toxtree.sourceforge.net/),
was used to place each compound into a class (1–5) based on mode of action. The Verhaar
scheme [15] is a decision tree which categorises a compound using various structural alerts.
It was updated and modified by Enoch et al. [16]. It classifies chemicals into one of five
categories as follows:

• Class 1 (narcosis or baseline toxicity)

• Class 2 (less inert compounds or polar narcotics)

• Class 3 (chemicals that demonstrate unspecific reactivity)

• Class 4 (compounds and groups of compounds acting by a specific mechanism)

• Class 5 (chemicals that cannot be classified as belonging to classes 1, 2 or 3 and that
are not known to act by a specific mechanism)

Enoch et al. [16] emphasise that the Verhaar scheme is a work in progress and is therefore
not 100% accurate. It is, however, a good indicator of a chemical’s mode of action. Chronic
data were only carried forward for compounds that were classified as 1 using the Verhaar
(modified) scheme. Compounds were additionally processed using ECOSARTM (v1.11).
ECOSARTM has an inbuilt function which allows it to class chemicals into groups such as
neutral organics. The majority of compounds classed into the neutral organics group act via
non-polar narcosis, however, this computerised system is also not 100% accurate [17,18]. In
addition to being classed as one by the Verhaar scheme, chemicals also had to be classed into
neutral organics by ECOSARTM.

2.3 Model creation and statistical model validation

Model processing and statistical analysis were performed using Minitab 16 Statistical
Software (http://www.minitab.com/en-us/products/minitab/). Potential outliers within the preli-
minary dataset were identified using regression analysis to identify data points with a high
normalized residual value (>2). These data points were subject to further investigation to
check whether they were indeed outliers. To allow external validation of the model the data
were divided into a training set and a test set. Dearden et al. [4] discuss the pitfalls that can
occur in this process and suggest a rational approach be adopted; additionally, a 2:1 training
to test set ratio is recommended. Here, the full data set was ordered by log Kow from low to
high. Then, going from low to high, every third compound was taken and placed separately
for the test set (excluded from model creation). This method allowed the created model to be
tested across the full range of log Kow values and ensured the resulting external validation
parameters were not unfairly dependent on the test-set selection. The lowest and highest log
Kow compounds were left in the training set each time in order to keep the largest applicabil-
ity domain possible, therefore the last compound selected for the test set was the second to
last rather than the last.

The final model was generated in Minitab using a fitted line plot (x = log Kow, y = log
NOEC (mmol/L)). The statistics used to characterize and validate the model were based on
those recommended by OECD guidance [19] and Dearden et al. [4]. The standard and
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adjusted coefficients of determination (r2 and r2adj), leave-one-out internally cross-validated
correlation coefficient (Q2

LOO), the Fisher statistic (and associated p values), and the standard
error of the estimate (Sest) were all calculated during regression analysis. Additionally, a
variety of residual distribution plots were created to examine the goodness of model fit and if
any systemic error was apparent.

To provide external validation of the model, NOEC predictions were made using the
model algorithm for the test-set compounds. These values were then correlated against the
experimental NOEC values for these compounds to generate an r2ext value. The r2ext value
obtained indicates the external predictive powers of the model.

3. Results and discussion

3.1 Model creation

Tables 1 and 2 display the data obtained during the data search divided into a training set
(n = 19) and test set (n = 10). The model generated using the training set is of the equation:

log NOEC (mmol/L) = 0.711 – 0.914 log Kow

The goodness of fit, as measured by the coefficient of determination (r2) and adjusted for
degrees of freedom (r2adj), robustness, as measured by internal cross validation (Q2

LOO), and
the standard error of the estimate (Sest) were used as measures of internal performance as
per the OECD principles [19]. Like the r2 value, the r2adj value shows how well the model
fits the training-set data ‘adjusted’ for the number of independent variables. The r2adj value
can therefore be used as a comparative value between models with different training-set sizes.
As shown in Table 3, the chronic toxicity model has a high r2adj value of 0.9 with an Sest of
0.38. This demonstrates that the model represents the training set very well and there is a
strong relationship between chronic toxicity and log Kow (Figure 1). Additionally the Fisher
and associated p values were 165 and < 0.001 respectively; it can therefore be concluded that
this correlation did not occur by chance. Residual plots are included for the model regression
(Figure 2); these demonstrate that there is no systematic error in the model which would be
an indicator of poor descriptor choice.

The Q2
LOO value indicates a model’s robustness and how much it is affected by small

changes in the training set.
The Q2

LOO value is calculated by systematically creating a series of models by removing
each observation from the data set once. Each model is then used to predict the value that
has been removed giving an indication of how well the overall model may predict new
observations. The closer these values are to one, the better; values of above 0.5 are generally
considered acceptable [20,21]. The model created in this study achieved a Q2

LOO of 0.88; this
shows that the model is robust and indicates good external predictivity, although external
validation is now generally accepted as being the best way to truly validate a model [4].

To test the predictive powers of the model algorithm, predictions were made for com-
pounds included in the test set (Table 2). Entering each compound’s log Kow into the equa-
tion, a series of predicted values were obtained. These values were plotted against the
experimental values found for these compounds (Figure 3). Residual plots are included for
the model validation in Figure 4. An r2ext value of 0.885 was obtained, indicating that the
model created has a very strong predictive capability. Additionally, the standard error of
prediction (Spre) was low at 0.41 log units; this value is not much higher than the typical
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experimental error associated with determining the log Kow (0.35 log units) [22]. Considering
that there will be a large error associated with each experimental chronic value (varying
across a selection of test methods), it would be unrealistic to achieve lower error values based
on the data used. This low error value is likely a result of the stringent data-selection criteria
and thorough inspection of data sources (where this was possible).

The statistical parameters of this model compare favourably with other works in this area
(Table 3). It is of note that the external validation value (r2ext) taken from de Haas et al. [6]
is very likely misleadingly high, as five compounds within the training set of their refined
ECOSARTM model are repeated in the test set (n = 23) which reduces the strenuousness of
the external test and reduces its significance.

3.2 Model use

The model created in this study has been shown to predict accurately the chronic toxicity for
compounds which fall into its applicability domain. To fall within the applicability domain of
this model, compounds must:

Table 3. Statistical parameters of the currently available chronic models.

Model r2 r2adj Q2
LOO

Sest
(log units)

Fisher
statistic (internal) p r2ext

Spre
(log units)

New model 0.91 0.90 0.88 0.38 165 < 0.001 0.89 0.41
QSARCHE [2] 0.76 0.76 0.75 N/A 495 Significant 0.73 N/A
de Haas [6] 0.77 N/A 0.76 N/A N/A N/A 0.84 N/A

Figure 1. Chronic fish toxicity model (generated from Table 1 data).
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Figure 2. Residual plots and distributions of the chronic fish toxicity model.

Figure 3. External model validation; experimental vs. predicted.
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• exert toxicity via non-polar narcosis.

• have a log Kow value between 0.46 and 5.30.

The model output will be in log mmol/L; to get a chronic toxicity value in mg/L, the user
must use anti-log and then multiply this value by the molecular weight of their compound.

As shown in Figure 1, both the confidence interval (CI) and prediction interval (PI) get
larger towards the outer limits of the model, in part due to the reduction in data density
(as compared to the middle of the model). Based on the relatively simple linear relationship
between chronic toxicity and log Kow it is feasible that accurate predictions may be made
outside the log Kow range of this model; however, extra care in the use of this value should
be taken and, for higher log Kow values, the toxicity value should be checked against the
water solubility of the compound to determine whether effects would occur.

4. Conclusions

The purpose of this study was to create a conservative chronic-toxicity QSAR with the ability
to predict sub-lethal NOEC values of non-polar narcotic compounds with respect to fish. It
can be concluded that the model created here, following best practice in QSAR development,
is capable of providing reliable predictions within its defined applicability domain. The model
can therefore be used to identify chemicals which may be an aquatic environmental hazard
with regards to regulatory compliance in lieu of chronic-toxicity screening methods involving
vertebrates. The model was created using the most conservative sub-lethal NOEC values and

Figure 4. External model validation; experimental vs. predicted residual plots.
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is therefore more likely to provide conservative and environmentally-protective predictions. In
the context of regulatory science this is very important as a conservative/protective approach
is consistently applied, even more so where less information is available for a specific
compound. To reduce the number of animal tests required to satisfy regulatory bodies, and
therefore the cost to industry and consumers, it is increasingly important to increase the
reliability and accuracy of QSARs where data allow.

The chronic QSAR created meets the criteria set out by the OECD [3]: the developed
QSAR has a defined end point, an unambiguous algorithm, a defined domain of applicability,
appropriate measures of goodness of fit, robustness and predictivity and a mechanistic
interpretation, as well as adhering to good QSAR development practices discussed by
Dearden et al. [4]. In addition, the QSAR compares favourably with other works currently
used to generate chronic values.

This work highlights the need for a thorough data inspection, especially when obtaining
data from large databases such as ECOTOX.
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