
Regulatory Toxicology and Pharmacology 70 (2014) 370–378
Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier .com/locate /yr tph
Automated and reproducible read-across like models for predicting
carcinogenic potency
http://dx.doi.org/10.1016/j.yrtph.2014.07.010
0273-2300/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: elena.lopiparo@rdls.nestle.com (E. Lo Piparo).

1 These authors contributed equally to this work.
Elena Lo Piparo a,⇑,1, Andreas Maunz b,1, Christoph Helma b, David Vorgrimmler b, Benoît Schilter a

a Chemical Food Safety Group, Nestlé Research Center, Lausanne, Switzerland
b In Silico Toxicology GmbH, Basel, Switzerland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 April 2014
Available online 15 July 2014

Keywords:
Alternative method
Risk assessment
Quantitative structure activity relationship
(QSAR)
Toxicity
Cancer potency (TD50)
Genotoxicity
Read-across
Several qualitative (hazard-based) models for chronic toxicity prediction are available through commer-
cial and freely available software, but in the context of risk assessment a quantitative value is mandatory
in order to be able to apply a Margin of Exposure (predicted toxicity/exposure estimate) approach to
interpret the data. Recently quantitative models for the prediction of the carcinogenic potency have been
developed, opening some hopes in this area, but this promising approach is currently limited by the fact
that the proposed programs are neither publically nor commercially available. In this article we describe
how two models (one for mouse and one for rat) for the carcinogenic potency (TD50) prediction have been
developed, using lazar (Lazy Structure Activity Relationships), a procedure similar to read-across, but
automated and reproducible. The models obtained have been compared with the recently published ones,
resulting in a similar performance. Our aim is also to make the models freely available in the near future
thought a user friendly internet web site.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Given increasing pressure to reduce animal testing, alternative
methods relating chemical structure to toxicity have been increas-
ingly valued in many regulatory organisations (ECHA, 2011; ICCR,
2012; U.S. EPA, 2008; EFSA, 2010; Arvidson et al., 2010). The con-
tribution of computational toxicology to the future of regulatory
decisions in public health has been addressed (NAS, 2007; Rusyn
and Daston, 2010; U.S. EPA, 2012) and nowadays computational
tools are widely promoted to support regulatory assessments and
decision making in the field of food safety (Lo Piparo et al.,
2011). In this context read-across has been mentioned as the most
actionable short term strategy for reducing animal use.

From a food sector perspective, the application of such
approaches may bring significant benefits not only in terms of sav-
ing time, cost, and with respect to reduction of use of laboratory
animals, but also will open new horizons of risk assessment, giving
the possibility of establishing levels of safety concern associated
with human exposure to toxicologically uncharacterized chemi-
cals. This is very relevant for both fast decision making (manage-
ment of emergency safety issues) and priority setting (safety by
design in research and development, R&D). Indeed new molecules
are continuously identified and quantified in products as a conse-
quence of the impressive improvement of analytical methods, and
therefore companies need often to face and manage cases of
emerging issues associated with chemicals for which no or little
toxicological data are available. Moreover fast preliminary safety
evaluations are increasingly required at the beginning of R&D pro-
jects for priority setting of potential new ingredients and to design
intrinsically safe chemicals (safety by design).

In silico strategies are already integrated in the preclinical
screening scheme of pharmaceutical discovery pipelines where
an early identification of unacceptable toxicological hazard is a
clear competitive advantage (Benfenati et al., 2009). Unfortunately
it is difficult to directly transfer and use this expertise to food
safety. Indeed the need of the food sector is different, where the
most likely application of computational toxicology models would
be in the establishment of the level of safety concern associated
with the inadvertent/accidental presence of chemicals in finished
products. This requires not only qualitative information on the
potential hazardous properties of the chemical (e.g. probability
that a compound is carcinogenic) but also quantitative information
(e.g. carcinogenic potency) allowing a comparison with estimated
exposure to establish the level of concern (Schilter et al., 2014).

Several qualitative (hazard-based) models for carcinogenicity
prediction are available through commercial and free software,
but only few tools are currently available for quantitative predic-
tion. Carcinogenicity has often been considered as a too complex
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end point (many mechanisms of action involved and little struc-
tural commonality) to be adequately modelled and quantitatively
predicted.

In this contest, guidance for genotoxic impurities (GTI) was
developed by US-FDA. The guidance suggests calculating cancer
risk based on carcinogenic potency from a structural similar known
carcinogen (USFDA, 2008). In addition recent efforts in the (Q)SAR
field have resulted in the development of local quantitative models
for the prediction of carcinogenic potency, opening some hopes in
this area. Indeed these models provide reasonable predictions with
errors within the same order of magnitude than the estimated var-
iability of experimental data. This promising approach is currently
limited by the fact that the proposed models are neither publically
(Bercu et al., 2010 and Toropov et al., 2009) nor freely available
(Contrera, 2011).

In contrast with the use of QSAR tools, generally the application
of read-across is a more ad hoc approach involving a range of subjec-
tive choices in terms of similarity metrics and criteria for analogues
selection. In this paper we describe two quantitative models (one for
rat and one for mouse) to predict carcinogenic potency of genotoxic
compounds by an alternative, automated and reproducible read-
across like procedure. The models have been developed using Lazar
(shortcut for lazy structure–activity relationships), a modular frame-
work for predictive toxicology (Maunz and Helma, 2008; Maunz
et al., 2013). The lazar models have been compared with the recently
published ones by Bercu et al. (2010) and Contrera (2011), resulting
in a similar performance.

Furthermore to provide transparency and meet regulatory
demands the models have been submitted to QMRF (QSAR Model
Reporting Format) Database (http://ihcp.jrc.ec.europa.eu/our_
labs/predictive_toxicology/qsar_tools/QRF) and will be made freely
available online through a user friendly platform that will provide
detailed supporting information to the predicted toxicity values,
such as the identification of the similar compounds used to build
the model and the prediction confidence.

2. Materials and methods

2.1. Lazar similarity search

Lazar searches a database with chemical structures and experi-
mental data (training set) for compounds similar to the query
structure (neighbours) and calculates a prediction from the experi-
mental measurements of the neighbours. Therefore it provides pre-
dictions for a given query compound in a three-step process
(Maunz et al., 2013):

- Identification of similar compounds in the training dataset
(neighbours).

- Creation of a local or read-across model for predictions based on
structures and experimental activities of these neighbours.

- Application of the local or read-across model to predict the
activity of the query compound.

For the determination of toxicity-related chemical similarities it
is important to consider only descriptors, or features, that are rel-
evant for the toxic endpoint under investigation. The crucial task is
therefore to identify these features. Lazar relies on data mining
algorithms to identify relevant features automatically from the
training data. This procedure is reproducible and saves expensive
expert work.

2.2. Statistical learning

In statistical learning theory, overfitting occurs when a statisti-
cal model describes noise instead of the underlying relationship.
Machine Learning (ML) algorithms, for example Support Vector
Machines (SVM) and Random Forests (RF) support strategies to
limit the fit to the training data.

SVMs are a class of algorithms where data points are treated as
vectors. For classification and regression, the data points are usu-
ally mapped to a high-dimensional feature space through kernel
functions. SVMs support regularization via an internal cost func-
tion (Vapnik and Cortes, 1995).

The RF algorithm incorporates a general strategy for regulariza-
tion known as bagging (short for bootstrap aggregation) (Breiman,
2001). In bagging, the training data is not processed as a whole by
the learning algorithm, but n so-called bootstrap samples are
drawn with replacement and trained upon individually. For
increasing n, the instances that where not selected for each sample,
termed OOB (out-of-bag), will cover around 36% of the data, on
average. RF builds a decision tree model for each bootstrap sample
to predict the dependent variable, and predicts the OOB data with
it to estimate the error rate of the model (Liaw and Wiener, 2002).
A RF model consists of a set of n such trees. A prediction for an
unknown data point (query compound) is derived by averaging
over the individual tree predictions of the forest. RF can fit arbi-
trarily shaped dependent variables, especially non-linear and
non-continuous ones, and is able to handle large amounts of
features.

Lazar was designed to handle high-dimensional, numerically
unconstrained feature spaces, while maintaining its instance-
based approach, i.e. a separate model is trained for each query
structure in a time efficient manner. Technically, this work
presents:

� Instance-based SVM learners with regularization.
� Feature selection services, controlled by bootstrapping.

These are employed for:

� Feature selection from more than 300 freely available, non-pro-
prietary, physico-chemical descriptors (Steinbeck et al., 2006;
O’Boyle et al., 2011; Wegner, 2004) using a Random Forest
approach.
� Several regression and derived classification models for predict-

ing numeric TD50 values and categories for potency.

2.3. Data set

A measure of carcinogenic potency is given by TD50, defined by
the daily dose in mg/kg/day that causes a tumor type in 50% of the
exposed animals that otherwise would not develop the tumor in a
standard lifetime (Gold et al., 2001). The datasets were composed
from CPDB entries by Bercu et al., available in supplementary
material for download. They consist of two datasets, one for rat
and one for mouse, each being split into 90% training and 10% test
data. The split was done by selecting every tenth compound from
the full data, sorted on TD50 values, which allowed full coverage
of training TD50 values in the test set. Moreover, Bercu et al. con-
verted TD50 values to pTD50 for data normalization by the follow-
ing equation:

pTD50 ¼ � log
TD50

1000 �molecular weight

� �

Dividing by molecular weight transforms the cancer potency
value on a molar basis. This study made no changes to the data
whatsoever, neither to compounds nor to activity values. Therefore
the dataset employed by this article, such as the one from Bercu
et al., contains a total of 460 training set plus 51 test set com-
pounds for rat, and 362 training set plus 40 test set compound
for mouse.
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2.4. Descriptors calculation

Several descriptors were calculated by OpenTox (Hardy et al.,
2010) compliant descriptor calculation services. For physico-chem-
ical descriptors the services provided by Ideaconsult (Jeliazkova
and Jeliazkov, 2011) were used. Categories were formed for the
available features as follows:
Category
 Number of descriptors
Constitutional
 16

Electronic
 33

Topological
 176
A textual description follows as list below:

� constitutional: Largest Chain, Aromatic Bonds Count, Longest
Aliphatic Chain, Rule Of Five, Atom Count, XLogP, ALOGP, Aro-
matic Atoms Count, Mannhold LogP, Bond Count, Rotatable
Bonds Count, Largest Pi System.
� electronic: APol, BPol, H-Bond Acceptor Count, H-Bond Donor

Count, CPSA.
� topological: Chi Path, Fragment Complexity, Kier-Hall Smarts,

Kappa ShapeIndices, Petitjean Number, Autocorrelation Mass,
VAdjMa, Chi Path Cluster, Wiener Numbers, Autocorrelation
Polarizability, Carbon Types, Eccentric Connectivity Index, Chi
Chain, MDE, Petitjean Shape Index, TPSA, Chi Cluster, Zagreb
Index, Autocorrelation Charge.

The numbers in the table exceed number of items for each list
category, because a descriptor name from the list may produce
several individual descriptors. The table numbers give the actual
number of descriptors used for modelling.

2.5. Feature selection

In order to cut down on the number of features, an approach
termed Recursive Feature Elimination (RFE) was applied. RFE first
learns a model on all features and on the complete (training) data,
thereby ranking features according to their influence on the model.
Then, it learns several models on the top-k features, for several val-
ues of k, and validates each one on some held out data in order to
determine a best feature selection (Kuhn, 2008).

The incarnation of RFE used here employed RF that provides a
valuable feature, namely a ranking of feature importance (see Sec-
tion 2.2). For each k, the bootstrap accounts for bias in selecting
features for the particular training set, so there is no need for a
set-aside test set. The number of bootstrap samples was set to 50
for each k and differences in the ranking among samples were
resolved by consensus voting.

2.6. Model training

Features were generated for training and test structures in
advance and stored in a local dataset, to be re-usable in each model
building process.

Model training in lazar is done separately for each prediction
(instance based learning). A schematic overview is given in Fig. 1.

Upon prediction time, training structures similar to the query
structure (neighbours) are derived through suitable transforma-
tions on the features (involving standardization and normaliza-
tion), and similarity calculation. Then a model is trained using
the neighbours as training set and the query structure is predicted
by the model. This process repeats for each query structure from
scratch.
The neighbours are found by using cosine similarity to the
query structure, and the model employs the SVM approach using
a radial basis function kernel. Suitable (hyper) parameters are
found via grid search (Maunz et al., 2013).

2.7. Statistical analyses

Validation runs proceeded as follows: for each training dataset,
the associated test dataset was predicted using each feature type in
turn. In total, two validation runs were conducted with different
feature selections.

As individual models are generated for each prediction, the
number of models created for a given test dataset is equal to
the number of test dataset instances (instance-based learning).
The exact features used in each model for characterising com-
pounds (training compounds and the test compound) were either
all features, or varied according to feature selection. Feature selec-
tion was done beforehand in a single pass for all training com-
pounds. Test compounds were of course completely ignored
during feature selection.

For each model, a prediction was made only if the neighbours
exceeded a certain similarity threshold to the query. Additionally,
a certain training accuracy was required on the training com-
pounds (governed by internal bootstrapping and grid-search as
described in Section 2.2). The computational effort could be kept
under control through parallel processing on all available CPU
cores, leading to mean training times of only 2–3 s per model.

Once a dataset prediction was finished, statistics were gathered
by the OpenTox validation service (Gütlein, 2013), which also pro-
duces detailed validation reports. In total, two validation runs were
conducted.

2.8. Model comparison

The quality of the models was determined through statistical
parameters such as:

� Coverage. The proportion of compounds in the test set that was
predicted. Variations between the models indicate differences
in the AD estimation, see Section 2.9 Applicability Domain.
� Specificity, also called true negative rate. Proportion of com-

pounds correctly predicted to be not potent relative to all com-
pounds experimentally determined not to be potent.
� Sensitivity, also called true positive rate. Proportion of com-

pounds correctly predicted to be potent relative to all com-
pounds experimentally determined to be potent.
� Concordance. The proportion of compounds correctly predicted

to be potent and not potent relative to total number of
predictions.
� Positive predictivity. Proportion of compounds correctly pre-

dicted to be potent relative to all predictions categorized as
potent.
� Negative predictivity. Proportion of compounds correctly pre-

dicted to be not potent relative to all predictions categorized
as not potent.

For classification, the ROC (Receiver Operating Characteristic)
score was calculated to provide an additional measure of the pre-
dictive performance of the models. On a graph sensitivity (true
positive rate) was plotted versus one minus the specificity (false
positive rate). Where a poor model with random predictions will
yield points on the diagonal line (ROC = 1) and the best possible
models, with high true positive rates and low false positive rates,
yield points in the top left-corner of the plot. For classification
analysis TD50 values were categorized as potent or not potent, or
as falling in between these two categories and considered to be



Feature Generation /
Transformation

Similarity calculation /
Neighbors

Learning Algorithm

Feature Filters
- near zero variance
- intercorrelations

Model / 
Prediction

Query structure Training structures

Feature Generation /
Transformation

Fig. 1. Lazar model workflow.
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indeterminate. As proposed by Bercu the boundaries for the classes
were chosen using the TTC value for genotoxic compounds equal to
1.5 lg/day for a 70 kg person (Müller et al., 2006). It was linearly
extrapolated to a TD50 value of 1 mg/kg/day and converted in
pTD50 values of 4.53 (using the lowest molecular weight in the
set of compounds with TD50 values 6 1 mg/kg/day). In order to
clearly separate the potent and not potent categories, the not
potent category was selected to start a TD50 level ten times higher
than the potent category (10 mg/kg/day). The TD50 value of 10 mg/
kg/day was associated with a pTD50 of 3.75, using the lowest
molecular weight in the set of compounds with TD50 val-
ues P 10 mg/kg/day.

Summarizing:

� The potent category contains compounds having pTD50 P 4.53
(corresponding to TD50 6 1 mg/kg/day).
� The not potent category contains compounds having pTD506 3.75

(corresponding to TD50 P 10 mg/kg/day).
� The indeterminate compounds contain compounds having

4.53 P pTD50 P 3.75.

Since pTD50 cutoff was based on the lower bound for all molec-
ular weights, many compounds that would have been categorized
as non-potent using TD50 were labelled potent using pTD50, reflect-
ing the model conservatism.
2.9. Applicability domain

Applicability domain estimation is a core model of the lazar
algorithm, and it is closely tied to the prediction algorithm, subject
to the same validation procedures as predictions. Conceptually, the
following factors affect the applicability domain of an individual
prediction:

- Number of neighbours.
- Similarities of neighbours.
- Coherence of experimental data within neighbours.
Consequently, a prediction based on a large number of neigh-
bours with high similarity and concordant experimental data will
be more reliable than a prediction based on a low number of neigh-
bours with low similarity and contradictory experimental results.
Hence, the confidence of the lazar algorithm is even more compre-
hensive than classical applicability domain approach that only con-
sider the feature value space, but not the coherence of the endpoint
values. More formally, the confidence of a prediction is defined by
the mean neighbour similarity.

If a query molecule is not well represented in the training data-
set, it will be outside of the applicability domain of the model and
it will have a poor regression statistic. In such cases, Lazar does not
make a prediction. Instead it warns the user that the compound
was outside the AD. Moreover, our models cannot handle certain
structures such as inorganic compounds, organometallics and mac-
romolecules (e. g. polymers, proteins and DNA).
3. Results

3.1. Feature selection

The first validation run was conducted using all available
descriptors. Acceptable performance was only achieved for consti-
tutional descriptors, where mouse data were better predicted than
rat ones.

In order to cut down on the number of features, especially for
categories electronic and topological, an approach termed recur-
sive feature elimination (RFE) was applied (see Section 2.5). The
RFE used here employed Random Forests, providing a ranking of
feature importance (see Section 2.2). The high number of boot-
strapped samples gave stable results, i.e. when repeated they dif-
fered only very slightly for constitutional and electronic features.

The second run was conducted using the features found by RFE.
The feature selection procedure using RFE yielded improved
results, mainly for the electronic and topological descriptors, the
effect for rat model being even greater than for mouse. Also, the
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number of unpredicted compounds has decreased drastically for
these descriptor types. These findings indicate that feature selec-
tion using RF is useful for SVM learners to cut down on the number
of features.
3.2. Model comparison

Predictions for this study were calculated using constitutional
descriptors, for mouse using all, and for rat using the ones selected
by RFE. Classification analysis was done, such as by Bercu et al.,
according to two different dichotomizations (see Section 2.8):

� hard cutoff: compounds with experimental pTD50 P 4.53 were
classified as potent, the rest as not potent.
� without indeterminate compounds: compounds with experimen-

tal pTD50 P 4.53 were classified as potent, and with experi-
mental pTD50 < 3.75 as not potent. Compounds with
experimental or predicted pTD50 P 3.75 and < 4.53 were disre-
garded (indeterminate).

In his publication, Contrera et al. gives single prediction values
(but no validation statistics) for the test set predictions. Therefore
it was possible to derive the statistic performance of the models
from the single values. This explains the reason why we concen-
trate mainly on Contrera’s study for comparison, because no single
predictions were reported by Bercu et al. The numbers used were
calculated based on the individual predictions given in the paper
(predicted vs. experimental pTD50). Consequently Fig. 2 compares
scatterplots only for the Contrera models. A linear fit is superim-
posed on top of the plots (dashed) to highlight systematic
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Fig. 2. Scatterplot
deviations from the diagonal. The shaded regions indicate false
positive (lower right) and false negative (upper left) predictions
according to the hard cutoff value of 4.53. Clearly, according to this
criterion, lazar made quite a lot of false negative predictions for rat,
where for mouse it did well for false positives and false negatives.
These findings seem contrary to the much reduced scatter in the
lazar models, as compared to the SciQSAR ones (Contrera et al.).
This example shows that the result depends very much on thresh-
old location, but not on numerical fit of the model. A hard cutoff is
also problematic due to the fact that a single value has no weight in
on a continuous scale (only intervals have), lacking rationale.

In Table 1 we analysed the percentage of compounds with
ratios between predicted and experimental less than or equal to
1, 2, 5 and 10-fold. For Contrera’s study, we converted pTD50 values
to TD50 values.

For rat, SciQSAR (Contrera model) performs better than our
model (78% of compounds within predictions 65-fold the experi-
mental value), while it is the other way around for mouse (86%
of compounds have been predicted from our model within 65-fold
the experimental value). Using VISDOM (Bercu model) a majority
of compounds had TD50 predictions that were less than or equal
to 5-fold the experimental value.

Table 2 gives classification results according to the hard cut-off.
The numbers for Contrera were re-calculated from his numeric
predictions.

Table 3 gives classification results with indeterminate com-
pounds left out. The numbers for Contrera were re-calculated from
his numeric predictions.

As reported in Tables 2 and 3, excluding indeterminate com-
pounds improved the results and the sensitivity of each model
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Table 1
Percentage of compounds with ratios between predicted and experimental less than or equal to 1, 2, 5, 10-fold.

Author (method) 61-fold (%) 62-fold (%) 65-fold (%) 610-fold (%)

Bercu et al. (VISDOM) Rat 59 64 86 86
Mouse 66 81 88 97

Contrera (SciQSAR) Rat 48 65 78 85
Mouse 56 75 78 97

This study (Lazar) Rat 43 57 71 76
Mouse 48 76 86 93

Table 2
Classification results (hard cutoff).

Measure This study (Lazar) Contrera (SciQSAR) Bercu et al. (Consensus)

Rat Mouse Rat Mouse Rat Mouse

Coverage 82% 73% 78% 80% 98% 98%
Specificity 71% 100% 85% 79% 40% 75%
Sensitivity 67% 57% 70% 63% 71% 53%
Concordance 69% 90% 78% 75% 62% 67%
Positive predictivity 70% 100% 82% 50% 74% 57%
Negative predictivity 68% 88% 74% 86% 38% 72%
ROC 2.33 +1 4.67 3.00 1.18 2.12

Table 3
Classification results (without indeterminate compounds).

Measure This study (Lazar) Contrera (SciQSAR) Bercu et al. (Consensus)

Rat Mouse Rat Mouse Rat Mouse

Coverage 43% 40% 37% 50% 63% 70%
Specificity 80% 100% 63% 79% 36% 85%
Sensitivity 93% 80% 82% 100% 86% 88%
Concordance 88% 94% 76% 83% 69% 86%
Positive predictivity 88% 100% 82% 56% 72% 70%
Negative predictivity 89% 92% 63% 100% 57% 94%
ROC 4.65 +1 2.2 4.76 1.34 5.87
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increased. Moreover, Receiver Operating Characteristic (ROC)
curve (Provost and Fawcett, 2001), as visualized by Fig. 3, was used
to provide an additional measure of the predictive performance of
the models and to visualise the relationship between sensitivity
and false positive rate. In a ROC curve, a model on the diagonal is
a poor model, having predictions no better than chance, whereas
a model located in the top left corner is the ideal model, having a
perfect (100%) prediction of positives and a perfect (0%) false posi-
tive rate. Typically, the ability to predict positives is made at the
expense of the false positive rate.

The ROC plot in Fig. 3 summarizes the situation (hollow points:
leaving out indeterminate compounds, filled points: hard cutoff,
dashed lines indicate ROC levels of 2.0, 3.0 and 4.0). When leaving
out indeterminate compounds, i.e. classes are separated by a dis-
tance of 4.53 � 3.75 = 0.78, both Lazar models have ROC > 4.0 with
both sensitivity and specificity P0.8. This should be the case for all
studies, but it is not. For example, the rat models of the other two
studies perform less well (Contrera) especially (Bercu et al.) in
terms of specificity. They also perform worse in terms of sensitiv-
ity. For the Contrera rat model, the specificity is even much worse
than in the hard cutoff scenario. The flaw is in using the hard cutoff
for classification: it hides the fact that the models perform less well
in the easier scenario (where classes are separated), and thus the
gross errors made for low and high pTD50 values. Both lazar mod-
els, on the other hand, clearly profit from the latter, as it should be
the case.

Clearly, leaving out indeterminate compounds reveals the bet-
ter lazar numeric predictivity in the form of very good values for
all measures (the ‘‘infinity’’ value for ROC is due to the fact that
lazar had perfect specificity, so a division by zero occurred). SciQ-
SAR, on the other hand, even gets worse on some measures.
3.3. Model uncertainty

Fig. 4 plots lazar Applicability Domain estimation, or confi-
dence, against RMSE (Root Mean Squared Error) (Wikipedia,
2014). Confidence here is an uncalibrated index, not a probability.
It is provided for every single prediction and is defined as the med-
ian neighbour similarity. Fig. 4 is interpreted as follows: the left-
most point indicates RMSE of the very first prediction only, the
second point indicates RMSE of the first two predictions, and so
forth, where predictions are ranked in descending confidence
order. There is a clear trend for both datasets: the more similar
the neighbours, the better the predictions. Therefore, it is possible
to estimate the accuracy of a given prediction based on its
confidence.
4. Discussion

The results presented in this paper show the feasibility of using
automated and reproducible read-across like models for the pre-
diction of carcinogenic potency. Previously approaches to make
carcinogenic potency predictions were reported in 2009 by Toro-
pov et al., in 2010 by Bercu et al. and in 2011 by Contrera. The latter
study employed a procedure similar to this study’s system to
obtain local models for a prediction. Given that the last two studies
used exactly the same experimental dataset that we did, it was
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Fig. 4. Lazar applicability domain estimation: mouse (left) and rat (right).
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decided to directly compare them, without any changes, neither on
compounds nor on activity values. We can summarize the differ-
ences/similarities between the Contrera, Bercu et al. and our stud-
ies in few points:

� The models have been compared resulting in similar
performance.
� The primary goal of both Bercu and Contera studies was to clas-

sify test compounds successfully into several potency classes,
but both predicted the two test datasets numerically as well,
as we did.
� Both feature a domain of applicability (AD) estimation. Simi-

larly to this study, they omit predictions if query structures
are estimated not to lie in the AD of the model.
� Methodologically this study is closer to the work of Contrera,

who also used instance-based learning (a dedicated model is
being learned for each prediction), and nearest neighbour selec-
tion from training data.
� All models provide predictions with errors within the same

order of magnitude.
The majority of the predictions of our models are within a factor
of 610-fold of the available experimentally-derived carcinogenic
potency values. To compare this factor with experimental variabil-
ity is a way to get insight into the quality of the model and its
potential applicability to establish level of safety concern. Indeed,
by definition prediction errors cannot be better than experimental
variability. Reproducibility of carcinogenesis bioassay was exam-
ined in 70 ‘‘near-replicate’’ comparisons consisting of 2 of more
studies applying the same experimental protocol (same route of
administration, same sex and strain of rodent). For 35 comparisons
of chemicals tested positive, the TD50 values were within a factor of
2, 5 and 10 of respectively 40, 80 and 90% of the comparisons (Gold
et al., 1987). In another, similar, study approximately 95% of TD50s
were estimated within a factor of 4 of the mean. Between strains,
about 95% of the TD50s were covered by a factor of 11 of their mean
(Gaylor et al., 1993). Using the same database, Gottmann et al.
(2001) assessed the variability of 121 replicate rodent carcinoge-
nicity assays from the literature part of the CPDB (Carcinogenic
Potency Database) and the NCI/NTP (National Cancer Institute
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and the National Toxicology Program) part of the CPDB (Gold et al.,
1999), it was found that the concordance among them was 57%
(that is within the concordance of our models). Taken together,
these limited data converge to indicate that available experimental
data are rather variable. Interestingly, the errors observed in our
models (and others) are within the same order of magnitude than
the experimental variability. This suggests that for the models, an
important source of limitations is the quality and scarceness of the
experimental data. Similar conclusion was drawn for models pre-
dicting rat chronic toxicity (Mazzatorta et al., 2008).

In contrast to read-across conducted by experts, which is time
consuming and subjective in terms of analogues selection, our
read-across models are automated and reproducible. Similar com-
pounds are chosen automatically considering not only chemical
structure but also the features (descriptors) relevant for the toxic
endpoint studied. This provides the possibility to check the
strength and plausibility of predictions.

To provide transparency and to allow external use and assess-
ment, our models will be made freely available online by a user
friendly interface that will convert back pTD50 to TD50. Detailed
supporting information will be provided, such as the analysis of
similar compounds used and the prediction confidence.

The models proposed require a range of similar chemicals in the
training set and if the models are used outside applicability
domain, the reliability of the prediction will be lower. Moreover
as it is encouraged by REACH, the best practise is to use more than
one model and more than one platform, whenever possible, and
the comparison of the results obtained will strengthen the confi-
dence of the prediction (Schilter et al., 2014). It’s important to keep
in mind that generally, like in any scientific field, data interpreta-
tion requires knowledge and expertise and using in silico models
is not an exception. Lazar derives computational models from
objective, traceable and reproducible statistical criteria. Therefore
the predictions obtained are statistically derived and the toxicolog-
ical expert is a key part of the process. Toxicologists should always
review and interpret the output and its belonging to the applicabil-
ity domain, in order to identify errors, chance correlations and
results that contradict with current knowledge and discard results
if necessary.
5. Conclusions

Increasing pressure to reduce or eliminate animal testing,
together with the need of fast decision making for management
of emergency safety issues, brought us to think about approaching
toxicity predictions in a different way. Instead of considering each
new chemical as an unknown entity, the toxicity of the chemical
under investigation can be directly inferred deriving all informa-
tion available from similar compounds whose activities are known.
For this purpose we developed automated and reproducible read-
across models for the quantitative prediction of carcinogenic
potency providing an automatic process for analogues selection
and prediction, as well as enabling interpretation of the results
obtained thought visual inspection of the similar compounds.
Indeed our models don’t involve any subjective choices in terms
of analogue selection, that is very often very time consuming, but
the similar compounds are chosen automatically, considering not
only the similarity based on chemical structure but also the fea-
tures relevant for the toxic endpoint studied. The models have
been validated and they provide predictions with errors within
the same order of magnitude than the estimated variability of
experimental data. Moreover through the user friendly platform,
soon freely available online, the analysis and visualization of the
similar compounds selected, together with the prediction confi-
dence, will enable the toxicologists to review the results obtained.
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