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Abstract

lazar is a new tool for the prediction of toxic properties of chemical structures. It derives predic-

tions for query structures from a database with experimentally determined toxicity data.lazar gener-

ates predictions by searching the database for compounds that are similarwith respect to a given toxic

activity and calculating the prediction from their activities. Apart form the prediction,lazar provides

the rationales (structural features and similar compounds) for the prediction and a reliable confidence

index that indicates, if a query structure falls within the applicability domain of the training database.

Leave-one-out (LOO) crossvalidation experiments were carried out for 10 carcinogenicity

endpoints (ffemalejmaleg fhamsterjmousejratg carcinogenicity and aggregate endpoints

fhamsterjmousejratg carcinogenicity androdent carcinogenicity) andSalmonellamutagenic-

ity from the Carcinogenic Potency Database (CPDB). An external validation ofSalmonellamutagenicity

predictions was performed with a dataset of 3895 structures. Leave-one-out and external validation ex-

periments indicate thatSalmonellamutagenicity can be predicted with 85% accuracy for compounds

within the applicability domain of the CPDB. The LOO accuracy oflazar predictions of rodent car-

cinogenicity is 86%, the accuracies for other carcinogenicity endpoints vary between 78 and 95% for

structures within the applicability domain.

Key Words Applicability Domain, Carcinogenic Potency Database, Data Mining,lazar , Predictive

Toxicology, (Quantitative) Structure-Activity Relationships

Abbreviations

CCRIS Chemical Carcinogenesis Research Information System

CPDB Carcinogenic Potency Database

DSSTox Distributed Structure-Searchable Toxicity Project

lazar Lazy Structure-Activity Relationships

LOO Leave-One-Out Crossvalidation

k-nn k-Nearest-Neighbours



(Q)SAR (Quantitative) Structure-Activity Relationships

Background

Chemical and pharmaceutical industries, regulatory agencies and research institutions need techniques that

are capable of identifying adverse effects at a very early stage of product development and provide reason-

able toxicity estimates for the huge number of untested compounds. This information comes traditionally

from in vivo testing, but the public pressure to reduce animal experiments and the lack of important tox-

icity information for many old compounds has led to an increased acceptance of alternative (in vitro and

in silico) methods. Computer based (in silico) techniques are particularly appealing for this purpose, be-

cause they are extremely fast and cost efficient and can be applied even when a compound is not physically

available.

The problem of predicting toxic activities from chemical structures can be approached from different

directions [1], e.g. with statistical(Quantitative)Structure-Activity Relationships ((Q)SAR)techniques [2],

by developing expert systems [3] or with the application of data mining and machine learning techniques

[4]. This paper presents a new approach for this purpose that uses anInductive Database[5, 6]. Inductive

Databases can be queried not only for data (as traditional databases), but also for regularities and patterns

within the data. lazar (Lazy Structure Activity Relationships) is a special-purpose extension of this

concept, because it allows to specify a chemical structure and to query for its potential biological activities.

This paper presents the algorithms that are used by thelazar engine to solve queries for toxic activities

and presents an exemplary validation study for rodent carcinogenicity andSalmonellamutagenicity.

Improving predictive accuracy (as determined by cross-validation or validation with an external test set)

has been for long the main driving force for the development of newin silico prediction techniques. The

quest for higher and higher predictive accuracies leads however frequently to overfitted models that perform

well on cross-validation or on a particular test set but fail completely on unknown compounds [7–9]. The

working hypothesis duringlazar development was that inaccurate predictions are frequently not the

result of poor algorithms, but of insufficient information in the database or of inaccurate experimental
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measurements. The main goal was to develop a system that is capable of

� working with databases of structurally diverse (non-congeneric) compounds (that do not act by a

common biochemical mechanism)

and of providing for each prediction

� the rationales that led to the prediction and

� an indication of the reliability of the prediction.

These features shall prohibit the naive trust in every prediction and ensure that predictions are amenable

to critical evaluations from toxicological experts. Please note that the algorithm presented in this article

differs substantially from previous versions oflazar [10, 11] that were based on Bayesian classifica-

tion/regression.

Methods

The lazar algorithm

Overview

lazar does not create a global (Q)SAR model that is valid for all instances, but it derives its prediction

specifically for aquerystructure with a modifiedk-nearest-neighbour (k-nn)algorithm. For this purpose

lazar searches a database with chemical structures and experimental data (training set) for compounds

that are similar to the query structure (neighbours) and calculates a prediction from the experimental mea-

surements of the neighbours. In contrast to traditional k-nn techniqueslazar considers chemical simi-

larities not as absolute values, but as values that have to be determinedwith respect to a given biological

activity (Figures 1,2). The prediction of the toxicity of a query compound requires four steps that will be

described in detail in the next sections:

1. Determination of features that characterise the structures of the query compound and the compounds

in the training set
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2. Selection of features that are relevant for the toxic endpoint under investigation

3. Identification of neighbours in the training set

4. Calculation of qualitative (classification) or quantitative (regression) predictions1

A formal representation of the complete algorithm is summarised in Figures 3 and 4 and a screenshot

of the web interface can be found in Figures 1 and 2.

FIGURE 1 - 2

FIGURE 3 - 4

Toxicity related chemical similarity

Similarity searching in chemical databases is an important topic in chemoinformatics research, an excellent

review of this subject can be found in an article by Willet et al. [12]. Most of these techniques do not work

directly with chemical graphs, but with a limited number of predefined substructures (fragments). Most

similarity indices rely on the number of fragments that are shared between the structures and the number

of fragments that occur only in a single structure. These numbers are summarised into a single index value,

e.g. the Tanimoto index (Equation 1).

For the determination of toxicity related chemical similarities it is important to consider only those

fragments, that are relevant for the toxic endpoint under investigation (i.e. only those parts of the chem-

ical structures that are involved in chemical reactions and transport processes that lead to toxicity or to

detoxification). The crucial task is therefore to identify these fragments in an efficient and reliable manner.

The classical strategy to derive toxicity related substructures is to consult the literature and domain

experts for the biochemical mechanisms that lead to a particular toxic effect and to definestructural alerts

for a particular endpoint. It is however likely that a predefined set of structural alerts is incomplete (or

maybe wrong), because many toxicity mechanism are still poorly understood or even unknown. This work

introduces an alternative approach for the determination of toxicity related chemical similarities that relies

on fragment languages (e.g. linear fragments, trees, subgraphs). With the help of Data Mining algorithms

1A regression algorithm is available in the currentlazar version, but it will not be a subject of this article.
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it is possible identify relevant fragments from a given language automatically from the training data. This

procedure saves error prone and expensive human work and some algorithms can even guarantee that no

relevant feature of the given language can be missed.

Determination of features lazar uses at present predominantly the language oflinear fragmentsfor

the identification of toxifying and detoxifying substructures [13]. Linear fragments are defined as chains

of heavy (non-hydrogen) atoms with connecting bonds, without branches or cycles. All linear fragments

that are present in the query structure or in one of the training structures are determined exhaustively by

a simplified version of the MOLFEA algorithm [13]. This step does not consider biological activities, the

relevant features are identified by the feature selection process described below. As all possible linear

fragments are evaluated, no relevant linear fragment can been missed.

Although linear fragments seem to be limited at a first glance (no explicit consideration of branches

or cycles), they perform remarkably well on a variety of toxicity endpoints. A possible reason is that

a lot of chemical information is implicitly contained in these fragments2 and the “chemical context” is

considered by the neighbourhood based prediction algorithm.lazar has furthermore the possibility to

derive linear fragments not only from the table of elements, but also from arbitrary SMARTS (http://

www.daylight.com/dayhtml/doc/theory/theory.smarts.html ) expressions. With such

an alphabet we have the facility to consider chemically relevant concepts like local chemical properties

(e.g. H-bond donor/acceptor), branching, presence in rings, rotable bonds or even stereochemistry.

We have also explored extensions of the fragment language towards 3D fragments [14] and arbitrary

subgraphs [15]. Up to now, the authors experience with various public toxicity datasets did not require

the necessity to implement such a computationally expensive framework. It is however important to note

that the feature selection and prediction algorithms presented below are independent of the fragments that

characterise the chemical structures.lazar may use therefore also other chemical features like mul-

tiple neighborhoods of atoms [16]/ augmented atoms [17], spectra or results from short term assays. An

extension towards quantitative molecular descriptors (e.g. HOMO, LUMO, logP) is also relatively straight-

2An aromatic atom e.g. is an indication of a ring system.
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forward.

Linear fragments and structural alerts (both are presently implemented inlazar ) can be used in con-

junction. Statistical criteria (see below) can be used to decide if a fragment is relevant in regard to toxicity

or not. This is a valuable tool forhypothesis testing.

Feature selection The goal of the feature selection step is the identification of fragments that are relevant

for the toxic activity under investigation.

The relevance of fragments for a given toxic activity can be determined with simple statistical tests.

lazar uses the chi-square test to identify fragments that occur significantly more frequent in toxic com-

pounds than in non-toxic compounds (or vice versa) and to calculate their statistical significancepf . Very

significant features have a higher impact on chemical similarities than features with low significance (Equa-

tion 1). For efficiency reasons fragments below a predefined threshold (pf < 0:95 3) are discarded from

further calculations.

As it may happen that a query structure has to be removed from the training structures (e.g. for vali-

dation purposes), activity information in the training database may change when multiple compounds are

predicted. It is therefore essential that relevant features are identified for each query compound separately.

Precomputing relevant fragments in a single preprocessing step can lead to overly optimistic validation

results.

Calculation of activity related similarity As soon as all relevant (i.e. statistically significant) fragments

have been identified for the training setD and the query structuresq, it is possible to determine the sim-

ilarities between the query structuresq and all training structuresst 2 D. If sq andst contain the same

set of fragments, they will be considered as equal (with respect to the given activity) with a similarity of

1, if they share no common fragment, they will be considered as unequal with a similarity of 0. Taking

into account the statistical significancespf of the significant fragmentsF we can define a similarity index

sim(sq; st; D) (weighted Tanimoto index) for structuressq andst with respect to the training databaseD
as:

3No optimisation of this parameter was performed to avoid overfitting.
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sim(sq; st; D) =

X
f2F

fpf 4jf � sq ^ f � stg
X
f2F

fpf 4jf � sq _ f � stg
(1)

with

pf jf � sq ^ f � st . . . significance of fragmentf that occurs insq andst
pf jf � sq _ f � st . . . significance of fragmentf that occurs insq or st 4

F . . . set of significant features

Prediction

To obtain the prediction for a query structure, toxicity related similarities are computed for each compound

in the training set. For efficiency reasons only instances of the training set with a similarity above a

predefined threshold (sim > 0:3 5) are considered asneighboursto the query structure. Predictions are

derived from all neighbours (N ) of a query structure.

Classification To classify a query structurelazar uses a weighted majority vote from all neighbours.

For this purpose we can define a confidence measureconf that indicates the expected class and the relia-

bility of the prediction as

conf =

X
n2N

fsimnjtn = "active"g4 �X
n2N

fsimnjtn = "inactive"g4

jN j (2)

with

simnjtn = "active" . . . similarity of active neighbourn
simnjtn = "inactive" . . . similarity of inactive neighbourn 6

N . . . set of neighbours

jN j . . . number of neighbours

4The exponent of 4 ensures that the contribution of fragements decreases exponentially with their significance. No optimisation
of this parameter was performed to avoid overfitting.

5No optimisation of this parameter was performed to avoid overfitting.
6The exponent of 4 reduces the weight of dissimilar neighbours. No optimisation of this parameter was performed to avoid

overfitting.
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A query structure is classified as active, ifconf > 0 and as inactive, ifconf < 0. This confidence

measure considers contradictory examples in the training set as well as the similarities of these instances

to the query structure. It is therefore a parameter that indicates theapplicability domainof the test set.

Implementation

lazar was implemented in C++ using the Openbabel (http://openbabel.sourceforge.net/ )

and Gnu Scientific (GSL) (http://www.gnu.org/software/gsl/ ) Libraries. InChI codes (main

layer) [18], an unique identifier for the connectivity of chemical structures, was used for the identification

if identical structures.lazar was compiled withgcc on various Linux distributions, porting to other

platforms should be possible, but has not been tested so far.lazar is available on request from the

author, a web interface forlazar can be found athttp://www.predictive-toxicology.org/

lazar/ . Figures 1 and 2 show a screenshots of the web interface.

Carcinogenic Potency Database (CPDB)

TheCarcinogenic Potency Database (CPDB)http://potency.berkeley.edu/cpdb.html con-

tains detailed results and analyses of more than 5000 chronic, long term carcinogenesis bioassays re-

ported in over 1200 papers in the general literature and more than 400 Technical Reports of the Na-

tional Cancer Institute/National Toxicology Program. For the purpose of this investigation the lat-

est CPDB Summary Table provided by the Distributed Structure-Searchable Toxicity (DSSTox) project

http://www.epa.gov/nheerl/dsstox/ was used (CPDBASv2a 1451 1Mar05.sdf . It con-

tains data for 1447 compounds with variable fractions of missing values for each endpoint.

Definition of endpoints

For the purpose of this study the following toxicity endpoints have been evaluated.

� Rodent Carcinogenicity,

� fHamsterjMousejRatg Carcinogenicity,
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� fMalejFemaleg fHamsterjMousejRatg Carcinogenicity and

� SalmonellaMutagenicity

An insufficient number of experimental results prevented reliable predictions for the remaining species

in the CPDB (Cynomolgus, Dog, Rhesus) as well as the prediction of organ specific effects. Classifications

for rodent carcinogenicity endpoints were obtained from the source data by applying the following criteria:

fHamsterjMousejRatg Carcinogenicity Positive classification (1) if a TD50 value is available, neg-

ative classification (0) if no positive results are available (NP ), inadequate studies have been ex-

cluded.

Rodent Carcinogenicity Positive classification (1) if compound is carcinogenic in at least one rodent

species (see before), negative (0) if compound has at least one negative carcinogenicity classification

(see before) and no positive classification.

fMalejFemaleg fHamsterjMousejRatg Carcinogenicity Positive classification (1) if the given

sex/species has at least one target site, negative classification (0) if no target sites have been identified

(NP ), inadequate studies have been excluded.

Salmonella Mutagenicity CPDB mutagenicity classifications (pos=neg) were used without further

modifications.

Validation

Leave-one-out crossvalidation

Leave-one-out(LOO) crossvalidation was used for all experiments. This means that all compounds from

the training set are sequentially used as a query structure to determine the concordance between the predic-

tion and the database activity. To enable an unbiased performance estimate the query compound (and all

identical structures) are completely removed from the trainingset before its prediction is calculated. This

implies of course that feature significances have to be reevaluated for each query structure. After a predic-

tion has been obtained, the query structure and all identical structures are returned to the training set. The
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process is repeated, until all compounds from the training set have served as query structures once [19]. For

all validation experimentssensitivities, specificities, positive/negative predictivityandpredictive accuracies

are summarised in Tables 1 - 11.

Validation with an external testset

As almost all public carcinogenicity data of sufficient quality has been integrated into the CPDB it is

at present impossible to find an external testset of sufficient size and quality to assess carcinogenicity

predictions. Fortunately the situation has improved recently forSalmonellamutagenicity as a new dataset

with 4337 compounds [20] was published in 2005. 3895 structures from this dataset have no mutagenicity

information in the CPDB and were therefore used as an external testset (Kazius/Bursi testset). The results

of this external validation experiment are summarised in Table 12.

Results

Leave-one-out crossvalidation

Tables 1 - 11 summarise the results of LOO validation. The first column contains the results that have been

obtained without a consideration of the applicability domain (i.e. all predictions are accepted). The predic-

tive accuracies can vary between 67% (Rat Carcinogenicity) and 86% (Male Hamster Carcinogenicity).

Unknown fragments (i.e. fragments that occur in the query structure, but not in the training set) have

been identified in a substantial number of predictions (e.g. 43% of Rodent Carcinogenicity predictions,

50% ofSalmonellaMutagenicity predictions). As no information about these fragments is available from

the training set, it is up to the expert user to determine their toxicological relevance. The accuracy of predic-

tions with/without unknown fragments is 67/72% for Rodent Carcinogenicity and 76/80% forSalmonella

mutagenicity. This indicates that a subset of the unknown fragments has indeed toxicological relevance

and can be responsible for misclassifications.

Another reason for misclassifications is harder to detect: These are structures that are too dissimilar to

the training structures to make reliable predictions, although they share all their fragments with the training
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set (i.e. they fall beyond the applicability domain of the training set). As thelazar confidence index

incorporates the distances to similar training set structures (neighbours) as well as contradictory results

within the training set it can be used as an indicator of the training sets applicability domain.

The second column in Tables 1 - 11 contains the results for structures within the applicability domain of

the training set. For the purpose of this investigation a cutoff value of 0.05 was selected for the confidence

index7. Predictions with a confidence index below this threshold were not accepted, because they fall

beyond the applicability domain of the training set. As expected, the predictive accuracies rise to 78%

(Female Rat Carcinogenicity) - 95% (Hamster Carcinogenicity) and the majority of crossvalidation results

is better than 85%.

TABLES 1 - 11

Figures 5 and 6 provide a more detailed picture of the relationship between predictive accuracy and

prediction confidence. Predictions are sorted according to their (absolute) confidence and cumulative pre-

diction accuracies are plotted against the confidence index in a procedure similarly to lift charts [21]. These

figures indicate also a good correlation between predictive accuracies and thelazar confidence index8.

FIGURES 6, 5

Validation with an external testset

Table 12 summarises the results ofSalmonellamutagenicity predictions for the external testset. The ac-

curacy of predictions without consideration of the applicability domain is considerably lower (69%) than

the LOO estimate for the same endpoint (78%). The results for structures within the applicability domain

of the training set is however much more homogeneous (external validation: 85%, LOO: 87%) and show

no signs of statistical significance as determined with the chi-square test (chi-square = 0.2647, p-value =

0.61). A plot of confidence indices vs. cumulative accuracies shows again a good correlation between both

values (Figure 7).

TABLE 12

7This value is adjustable to account for variable application scenarios.
8Plots for the remaining endpoints show a similar shape. The high variability at the left hand side of the charts is the consequence

of small sample sizes.
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FIGURE 7

Discussion

Performance of thelazar algorithm

Similarity and neighbourhood based techniques have a long and successful history in Chemoinformat-

ics [12]. Despite their conceptual simplicity they are frequently capable of outperforming much more

complex QSAR techniques. Similarity based predictions are also appealing from a technical point of view,

as in contrast to other QSAR methods (e.g. regression and projection based techniques) very few model as-

sumptions are required. The rationale behind these techniques is in addition very close to the reasoning of

human experts about toxicity, who also argue frequently with compounds that belong to the same chemical

class and act by similar mechanisms. We assume therefore that it is relatively easy for a trained toxicol-

ogist to interpret and evaluate the results of similarity based predictions, e.g. by inspecting the proposed

neighbours and searching for additional information about these compounds, if necessary.

Existing similarity based techniques can consider activity-specific similarities only by using predefined

libraries of structural alerts for toxicity, but their definition and formal representation is laborious and error-

prone.lazar overcomes this limitation by determining relevant fragments and activity related similarities

automatically from experimental data.

The LOO results in Tables 1 - 11 indicate thatlazar is capable of predicting a variety of carcino-

genicity endpoints and to identify structures that fall beyond the applicability domain of the training set

in a reliable manner. If the applicability domain is considered predictive accuracies can exceed 85% for

almost all carcinogenicity endpoints.

An analysis of predictions for the external test set [20] substantiates the importance of considering the

applicability domain (Table 12). At a first glance the accuracy for external predictions (69%) is substan-

tially lower than the LOO results (78%, Table 2). This seems to support a common conception in the

(Q)SAR community that LOO (and crossvalidation schemes in general) gives overly optimistic results. It

is however very likely that an external test set of sufficient size contains a rather large fraction of poorly
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predictable compounds that fall beyond the applicability domain of the training set. Table 12 provides evi-

dence that this is indeed the case for the Kazius/Bursi validation set. If structures with a confidence< 0:05
are not accepted as reliable predictions, the predictive accuracy reaches 85% for external predictions. LOO

with consideration of the applicability domain leads to almost the same value (87%, Table 2). Both results

show no statistically significant differences (chi-square = 0.2647, p-value = 0.61).

This result is not only an indication of the good performance of thelazar algorithm, but also another

indication that LOO provides indeed a reliable estimate of (Q)SAR predictions [19], if

� all information from the test structure has been removed from the test set9 and

� only predictions that fall within the applicability domain of the training set are accepted.

It is presently impossible to perform a direct comparison oflazar with other carcinogenicity pre-

diction techniques, as none of the other techniques were evaluated with the CPDB, and it seems that the

size and composition of training and test sets has a major impact on the validation results [9]. The author

has however used various combinations of MOLFEA derived linear fragments in conjunction withSupport

Vector Machines (SVM)to predictSalmonellamutagenicity [22] for an old version of the CPDB. The best

results of this investigation are comparable (predictive accuracy: 0.785) to thelazar predictions with-

out consideration of the applicability domain (predictive accuracy: 0.782) in terms of accuracy, but the

impact of various MOLFEA and SVM parameters on predictive accuracy did not show a consistent trend.

It is also likely that the crossvalidation results of the former investigation are too optimistic because class

sensitive feature selection was performed prior to crossvalidation. Bayesian prediction techniques as they

were implemented in previouslazar versions [10, 11] perform similarly, but they make heavy use ofa

priori probabilities, which leads to poor results on test sets with different fractions of actives and inactives

(unpublished results).

Generally, the prediction of carcinogenic activity from chemical structures alone is known as a hard

problem and many predictions fail to exceed the default probabilities [7–9, 23, 24]. Benigni and Zito [8]

9If feature selection and/or parameter optimisations are performed these steps have to be recalculated after the test structure has
been removed from the training set. This may cause methodological problems for expert derivedstructural alerts, because he/she
cannot forget information that has been derived from the test structure.
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consider 65% as a reasonable upper limit of current technologies for rodent carcinogenicity predictions.

Compared to these numbers, the performance oflazar is indeed an improvement.

Inspection of misclassifications

Despite the favourablelazar validation results it is obvious from Figures 5 - 7 that there are still structures

that are misclassified despite high confidence indices. The purpose of this section is to discuss the most

problematic misclassifications of the LOO results for the endpoints Rodent Carcinogenicity andSalmonella

Mutagenicity as well as for the external validation exercise (Table 13).

Rodent Carcinogenicity (LOO)

The most problematic misclassifications of LOO crossvalidation are most likely the result of inconsisten-

cies in the database. Quercetin (CAS 117-39-5) and sodium saccharin (CAS 128-44-9) e.g. are labelled as

carcinogens in the database, although other compounds with the same parent structure (quercetin dihydrate,

saccharin and calcium saccharin) are inactive. In these cases the “inactive”lazar prediction is probably

correct. Retinol acetate (CAS 127-47-9, Vitamin A, prediction: inactive) has been found to induce tumors

in the adrenal gland of rats at high doses in a single study, but it is likely not a carcinogen at physiological

concentrations.

SalmonellaMutagenicity (LOO)

The Chemical Carcinogenesis Research Information System (CCRIShttp://toxnet.nlm.nih.

gov/ ) lists several positive results in a variety ofSalmonellastrains for Chlorodibromomethane (CAS

124-48-1,lazar classification: active), although the CPDB classification is inactive. The misclassifica-

tions of 2-Mercaptobenzothiazole (CAS 149-30-4) and its dimer Benzothiazyl disulfide (CAS 120-78-5)

for Salmonellamutagenicity depend on each other, because both compounds are classified differently in the

CPDB, despite their structural similarity. The classification of Benzothiazyl disulfide asSalmonellamu-

tagen, is however very questionable, because a recent evaluation (http://www.epa.gov/chemrtk/

bnzthict/c13324tc.htm ) reports 9 negative and a single positive result. If we assume a negative
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category for Benzothiazyl disulfide, 2-Mercaptobenzothiazole will also be correctly classified as negative,

because it is its closest neighbour.

SalmonellaMutagenicity (external testset)

The most problematic misclassification from the external testset is Azauraxil (CAS 461-89-2, prediction:

inactive). CCRIS lists no positiveSalmonellamutagenicity findings for Azauraxil, but the structurally iden-

tical IPO 3834 was active in strains TA1538 and TA98 with metabolic activation by rat liver S9 (but not

with mouse liver S9). The remaining 17 assays were negative. Diazoxon (CAS 962-58-0, prediction: inac-

tive) was active in TA100 without metabolic activation, but inactive in TA100 with and in TA98 with and

without metabolic activation. The structurally similar Diazinon (CAS 333-41-5) was negative in all assays.

According to the CCRIS Benzo(b)chrysene (CAS 214-17-5, prediction: active) was tested only in a single

Salmonellastrain (TA100) and structurally related PAHs like Dibenz(a,h)anthracene and Benzo(a)pyrene

are well known mutagens.

This brief discussion clearly indicates that many of the most problematic misclassifications can be

attributed to inconsistencies in the database. The experimental findings for many of these compounds are

frequently limited and sometimes contradictory.

There is still the possibility for systematic errors, because linear fragments cannot account for all struc-

tural differences. If e.g. the nonmutagenicity of Benzo(b)chrysene is experimentally confirmed, there might

be a problem to differentiate it from other PAHs like Dibenz(a,h)anthracene and Benzo(a)pyrene. In this

case it will be necessary to substitute linear fragments with a richer fragment language (e.g. subgraphs),

but the main classification algorithm can remain the same.

Conclusions

lazar is a new tool for the prediction of toxic properties of chemical structures. It derives predictions for

query structures from a database with experimentally determined toxicity data. For this purpose,lazar

searches the database for compounds that are similarwith respect to a given toxic activityand calculates

the prediction from their activities.lazar is able to determine wheter a query structure falls within the
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applicability domain of the training set, by assigning a confidence index to each prediction.

Leave-one-out crossvalidation and validation with an external testset of almost 4000 compounds, indi-

cate thatlazar is capable of achieving predictive accuracies of more than 85% for most of the investi-

gated carcinogenicity and mutagenicity endpoints and that it is capable of discriminating reliably between

trustworthy and not trustworthy predictions. It is interesting to note that the crossvalidation and external

validation results are in good agreement for structures within the applicability domain of the training set.

As high prediction accuracies are achievable for compounds within the applicability domain of the

test set, it may be justified to conclude that the poor performance of previous attempts to predict rodent

carcinogenicity is not primarily the consequence of poor prediction techniques, complex biological mecha-

nisms [25] or unreliable data [7,26], but rather the consequence of an insufficient coverage of the chemical

space in the training sets. This hypothesis is in accordance with Benigni and Giulianis [27] observation

that it is in fact possible to obtain reliable carcinogenicity predictions for certain types of (congeneric)

compounds (e.g. aromatic amines and nitroaromatics).

A web interface for theCarcinogenic Potency Database (CPDB)can be accessed athttp://www.

predictive-toxicology.org/lazar . The source code for the command line version of the com-

plete program can be obtained on request from the author.
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Figure 1:lazar screenshot of the prediction of rodent carcinogenicity for 3-Methylbutanal methylformyl-
hydrazone

The query structure and the first neighbour are depicted in the right frame. Fragments can be highlighted
in both structures. Note the difference between neighbours and fragments forSalmonellamutagenicity
(Figure 2), this is the result of activity specific similarities.
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Figure 2: lazar screenshot of the prediction ofSalmonellamutagenicity for 3-Methylbutanal methyl-
formylhydrazone

This prediction is unreliable, because the query structure falls beyond the applicability domain of the
training set (Confidence < 0:05). The query structure and the first neighbour are depicted in the right
frame. Fragments can be highlighted in red in both structures. Note the difference between neighbours
and fragments for rodent carcinogenicity (Figure 1), this is the result of activity specific similarities.
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Figure 3: The mainlazar algorithm for classification and regression

Determination of Neighbours

Require: Query structuresq, training databaseD = f(s1; t1); (s2; t2); : : : ; (sn; tn)g with training struc-
turessi and training activities,ti
NeighboursN = fg
for all si 2 D do
simi = similarity(sq; si; D)
if simi > 0:3 then
N = N [ (si; ti; simi)

end if
end for

Classification

Require: NeighboursN

conf =
X
n2N

fsimnjtn = "active"g4 �X
n2N

fsimnjtn = "inactive"g4
jN j

if conf > 0 then
tq = "active"

else ifconf < 0 then
tq = "inactive"

end if
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Figure 4: Determination of activity specific chemical similarities

Require: Query structuresq, training structurest, training databaseD, fragment language and/or prede-
fined fragmentsL
Significant fragmentsF = fg
for all ff 2 Ljf � sq _ f � stg do
pf = significance(f;D) fdetermined e.g. by the�2- or sign-test.g
if pf � 0:95 then
F = F [ f

end if
end for

sim(sq; st; D) =

X
f2F

fp4f jf � sq ^ f � stg
X
f2F

fp4f jf � sq _ f � stg
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Figure 5: Confidence vs. predictive accuracy for rodent carcinogenicity
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Figure 6: Confidence vs. predictive accuracy forSalmonellamutagenicity
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Figure 7: Confidence vs. predictive accuracy for external predictions ofSalmonellamutagenicity
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Tables

Table 1: Leave-one-out crossvalidation of rodent carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 513 209
True negative predictions tn 457 139
False positive predictions fp 190 26
False negative predictions fn 197 31

True positive rate (Sensitivity) tp=(tp+ fn) 0.7225 0.8708
True negative rate (Specificity) tn=(tn+ fp) 0.7063 0.8424
Positive predictivity tp=(tp+ fp) 0.7297 0.8894
Negative predictivity tn=(tn+ fn) 0.6988 0.8176

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7148 0.8593

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 2: Leave-one-out crossvalidation ofSalmonellamutagenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 283 147
True negative predictions tn 287 109
False positive predictions fp 85 20
False negative predictions fn 74 19

True positive rate (Sensitivity) tp=(tp+ fn) 0.7927 0.8855
True negative rate (Specificity) tn=(tn+ fp) 0.7715 0.8450
Positive predictivity tp=(tp+ fp) 0.7690 0.8802
Negative predictivity tn=(tn+ fn) 0.7950 0.8516

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7819 0.8678

a Without consideration of the applicability domain.b Predictions within applicability domain.

Table 3: Leave-one-out crossvalidation of hamster carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 30 26
True negative predictions tn 22 11
False positive predictions fp 4 1
False negative predictions fn 7 1

True positive rate (Sensitivity) tp=(tp+ fn) 0.8108 0.9630
True negative rate (Specificity) tn=(tn+ fp) 0.8462 0.9167
Positive predictivity tp=(tp+ fp) 0.8824 0.9630
Negative predictivity tn=(tn+ fn) 0.7586 0.9167

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.8254 0.9487

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 4: Leave-one-out crossvalidation of mouse carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 220 94
True negative predictions tn 388 137
False positive predictions fp 97 14
False negative predictions fn 153 23

True positive rate (Sensitivity) tp=(tp+ fn) 0.5898 0.8034
True negative rate (Specificity) tn=(tn+ fp) 0.8000 0.9073
Positive predictivity tp=(tp+ fp) 0.6940 0.8704
Negative predictivity tn=(tn+ fn) 0.7172 0.8562

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7086 0.8619

a Without consideration of the applicability domain.b Predictions within applicability domain.

Table 5: Leave-one-out crossvalidation of rat carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 317 164
True negative predictions tn 412 106
False positive predictions fp 149 18
False negative predictions fn 212 24

True positive rate (Sensitivity) tp=(tp+ fn) 0.5992 0.8723
True negative rate (Specificity) tn=(tn+ fp) 0.7344 0.8548
Positive predictivity tp=(tp+ fp) 0.6803 0.9011
Negative predictivity tn=(tn+ fn) 0.6603 0.8154

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.6688 0.8654

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 6: Leave-one-out crossvalidation of female hamster carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 21 18
True negative predictions tn 18 16
False positive predictions fp 6 3
False negative predictions fn 4 1

True positive rate (Sensitivity) tp=(tp+ fn) 0.8400 0.9474
True negative rate (Specificity) tn=(tn+ fp) 0.7500 0.8421
Positive predictivity tp=(tp+ fp) 0.7778 0.8571
Negative predictivity tn=(tn+ fn) 0.8182 0.9412

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7959 0.8947

a Without consideration of the applicability domain.b Predictions within applicability domain.

Table 7: Leave-one-out crossvalidation of male hamster carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 24 20
True negative predictions tn 20 13
False positive predictions fp 3 2
False negative predictions fn 4 1

True positive rate (Sensitivity) tp=(tp+ fn) 0.8571 0.9524
True negative rate (Specificity) tn=(tn+ fp) 0.8696 0.8667
Positive predictivity tp=(tp+ fp) 0.8889 0.9091
Negative predictivity tn=(tn+ fn) 0.8333 0.9286

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.8627 0.9167

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 8: Leave-one-out crossvalidation of female mouse carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 158 83
True negative predictions tn 451 157
False positive predictions fp 57 13
False negative predictions fn 150 21

True positive rate (Sensitivity) tp=(tp+ fn) 0.5130 0.7981
True negative rate (Specificity) tn=(tn+ fp) 0.8878 0.9235
Positive predictivity tp=(tp+ fp) 0.7349 0.8646
Negative predictivity tn=(tn+ fn) 0.7504 0.8820

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7463 0.8759

a Without consideration of the applicability domain.b Predictions within applicability domain.

Table 9: Leave-one-out crossvalidation of male mouse carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 135 71
True negative predictions tn 431 153
False positive predictions fp 60 16
False negative predictions fn 145 30

True positive rate (Sensitivity) tp=(tp+ fn) 0.4821 0.7030
True negative rate (Specificity) tn=(tn+ fp) 0.8778 0.9053
Positive predictivity tp=(tp+ fp) 0.6923 0.8161
Negative predictivity tn=(tn+ fn) 0.7483 0.8361

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7341 0.8296

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 10: Leave-one-out crossvalidation of female rat carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 183 93
True negative predictions tn 448 132
False positive predictions fp 72 26
False negative predictions fn 151 38

True positive rate (Sensitivity) tp=(tp+ fn) 0.5479 0.7099
True negative rate (Specificity) tn=(tn+ fp) 0.8615 0.8354
Positive predictivity tp=(tp+ fp) 0.7176 0.7815
Negative predictivity tn=(tn+ fn) 0.7479 0.7765

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7389 0.7785

a Without consideration of the applicability domain.b Predictions within applicability domain.

Table 11: Leave-one-out crossvalidation of male rat carcinogenicity predictions.

Confidence � 0a > 0:05b

True positive predictions tp 203 123
True negative predictions tn 440 132
False positive predictions fp 86 21
False negative predictions fn 166 28

True positive rate (Sensitivity) tp=(tp+ fn) 0.5501 0.8146
True negative rate (Specificity) tn=(tn+ fp) 0.8365 0.8627
Positive predictivity tp=(tp+ fp) 0.7024 0.8542
Negative predictivity tn=(tn+ fn) 0.7261 0.8250

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.7184 0.8388

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 12: Validation ofSalmonellamutagenicity predictions for an external testset

Confidence � 0a > 0:05b

True positive predictions tp 1467 546
True negative predictions tn 1183 282
False positive predictions fp 492 103
False negative predictions fn 676 39

True positive rate (Sensitivity) tp=(tp+ fn) 0.6846 0.9333
True negative rate (Specificity) tn=(tn+ fp) 0.7063 0.7325
Positive predictivity tp=(tp+ fp) 0.7489 0.8413
Negative predictivity tn=(tn+ fn) 0.6364 0.8785

Accuracy (Concordance) (tp+ tn)=(tp+ tn+ fp+ fn) 0.6941 0.8536

a Without consideration of the applicability domain.b Predictions within applicability domain.
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Table 13: Misclassified instances with high prediction confidences

Classification
Compound
Name

CAS Confidence lazar CPDB Remarks

Rodent Carcinogenicity (LOO)

Quercetin 117-39-5 -0.6605 inactive active Quercetin dihydrate inactive
Sodium
saccharin

128-44-9 -0.4938 inactive active Saccharin and Calcium saccha-
rin inactive

Retinol
acetate

127-47-9 -0.3734 inactive active Vitamin A probably not car-
cinogenic at physiological doses

Salmonellamutagenicity (LOO)

Chloro-
dibromo-
methane

124-48-1 0.4580 active inactive Active in severalSalmonella
strains with and without
metabolic activation (CCRIS)

2-Mercapto-
benzothiazole

149-30-4 0.3445 active inactive Classification based on Ben-
zothiazyl disulfide (see below)

Benzothiazyl
disulfide

120-78-5 -0.3222 inactive active Classification based on 2-
Mercaptobenzothiazole (see
above)

Salmonellamutagenicity (Kazius/Bursi testset)

Azaurazil 461-89-2 -0.5479 inactive active Azaurazil negative, IPO
3834 inactive in 17 from 19
Salmonellaassays (CCRIS)

Diazoxon 962-58-3 -0.4249 inactive active Active in TA100 without
metabolic activation, TA100
with and TA98 with/without
metabolic activation negative,
Diazinon negative

Benzo(b)-
chrysene

214-17-5 0.4061 active inactive Tested only in a single strain
(TA100), related PAHs like
Dibenz(a,h)anthracene and
Benzo(a)pyrene are active

CCRIS . . . Chemical Carcinogenesis Research Information Systemhttp://toxnet.nlm.nih.gov/
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